Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Pharmacol Rev ; 74(1): 141-206, 2022 01.
Article in English | MEDLINE | ID: covidwho-1978532

ABSTRACT

The number of successful drug development projects has been stagnant for decades despite major breakthroughs in chemistry, molecular biology, and genetics. Unreliable target identification and poor translatability of preclinical models have been identified as major causes of failure. To improve predictions of clinical efficacy and safety, interest has shifted to three-dimensional culture methods in which human cells can retain many physiologically and functionally relevant phenotypes for extended periods of time. Here, we review the state of the art of available organotypic culture techniques and critically review emerging models of human tissues with key importance for pharmacokinetics, pharmacodynamics, and toxicity. In addition, developments in bioprinting and microfluidic multiorgan cultures to emulate systemic drug disposition are summarized. We close by highlighting important trends regarding the fabrication of organotypic culture platforms and the choice of platform material to limit drug absorption and polymer leaching while supporting the phenotypic maintenance of cultured cells and allowing for scalable device fabrication. We conclude that organotypic and microphysiological human tissue models constitute promising systems to promote drug discovery and development by facilitating drug target identification and improving the preclinical evaluation of drug toxicity and pharmacokinetics. There is, however, a critical need for further validation, benchmarking, and consolidation efforts ideally conducted in intersectoral multicenter settings to accelerate acceptance of these novel models as reliable tools for translational pharmacology and toxicology. SIGNIFICANCE STATEMENT: Organotypic and microphysiological culture of human cells has emerged as a promising tool for preclinical drug discovery and development that might be able to narrow the translation gap. This review discusses recent technological and methodological advancements and the use of these systems for hit discovery and the evaluation of toxicity, clearance, and absorption of lead compounds.


Subject(s)
Drug Discovery , Drug-Related Side Effects and Adverse Reactions , Drug Development , Drug Evaluation, Preclinical , Humans , Multicenter Studies as Topic
2.
Sci Adv ; 7(1)2021 01.
Article in English | MEDLINE | ID: covidwho-1388432

ABSTRACT

Using AI, we identified baricitinib as having antiviral and anticytokine efficacy. We now show a 71% (95% CI 0.15 to 0.58) mortality benefit in 83 patients with moderate-severe SARS-CoV-2 pneumonia with few drug-induced adverse events, including a large elderly cohort (median age, 81 years). An additional 48 cases with mild-moderate pneumonia recovered uneventfully. Using organotypic 3D cultures of primary human liver cells, we demonstrate that interferon-α2 increases ACE2 expression and SARS-CoV-2 infectivity in parenchymal cells by greater than fivefold. RNA-seq reveals gene response signatures associated with platelet activation, fully inhibited by baricitinib. Using viral load quantifications and superresolution microscopy, we found that baricitinib exerts activity rapidly through the inhibition of host proteins (numb-associated kinases), uniquely among antivirals. This reveals mechanistic actions of a Janus kinase-1/2 inhibitor targeting viral entry, replication, and the cytokine storm and is associated with beneficial outcomes including in severely ill elderly patients, data that incentivize further randomized controlled trials.


Subject(s)
Antiviral Agents/pharmacology , Azetidines/pharmacology , COVID-19/mortality , Enzyme Inhibitors/pharmacology , Janus Kinases/antagonists & inhibitors , Liver/virology , Purines/pharmacology , Pyrazoles/pharmacology , SARS-CoV-2/pathogenicity , Sulfonamides/pharmacology , Adult , Aged , Aged, 80 and over , COVID-19/metabolism , COVID-19/virology , Cytokine Release Syndrome , Cytokines/metabolism , Drug Evaluation, Preclinical , Female , Gene Expression Profiling , Humans , Interferon alpha-2/metabolism , Italy , Janus Kinases/metabolism , Liver/drug effects , Male , Middle Aged , Patient Safety , Platelet Activation , Proportional Hazards Models , RNA-Seq , Spain , Virus Internalization/drug effects , COVID-19 Drug Treatment
3.
Curr Opin Pharmacol ; 59: 11-18, 2021 08.
Article in English | MEDLINE | ID: covidwho-1286285

ABSTRACT

Since the discovery of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in late 2019, intense research efforts on an unprecedented scale have focused on the study of viral entry mechanisms and adaptive immunity. While the identification of angiotensin-converting enzyme 2 (ACE2) and other co-receptors has elucidated the molecular and structural basis for viral entry, the pathobiological mechanisms of SARS-CoV-2 in human tissues are less understood. Recent advances in bioengineering have opened opportunities for the use of organotypic human tissue models to investigate host-virus interactions and test antiviral drug candidates in a physiological context. Although it is too early to accurately quantify the added value of these systems compared with conventional cell systems, it can be assumed that these advanced three-dimensional (3D) models contribute toward improved result translation. This mini-review summarizes recent work to study SARS-CoV-2 infection in human 3D tissue models with an emphasis on the pharmacological tools that have been developed to understand and prevent viral entry and replication.


Subject(s)
COVID-19 Drug Treatment , Models, Biological , SARS-CoV-2 , Drug Development , Humans , Intestines , Kidney , Liver , Organoids , Respiratory System
4.
EMBO Mol Med ; 13(1): e13426, 2021 01 11.
Article in English | MEDLINE | ID: covidwho-1024813

ABSTRACT

There is a critical need for safe and effective drugs for COVID-19. Only remdesivir has received authorization for COVID-19 and has been shown to improve outcomes but not decrease mortality. However, the dose of remdesivir is limited by hepatic and kidney toxicity. ACE2 is the critical cell surface receptor for SARS-CoV-2. Here, we investigated additive effect of combination therapy using remdesivir with recombinant soluble ACE2 (high/low dose) on Vero E6 and kidney organoids, targeting two different modalities of SARS-CoV-2 life cycle: cell entry via its receptor ACE2 and intracellular viral RNA replication. This combination treatment markedly improved their therapeutic windows against SARS-CoV-2 in both models. By using single amino-acid resolution screening in haploid ES cells, we report a singular critical pathway required for remdesivir toxicity, namely, Adenylate Kinase 2. The data provided here demonstrate that combining two therapeutic modalities with different targets, common strategy in HIV treatment, exhibit strong additive effects at sub-toxic concentrations. Our data lay the groundwork for the study of combinatorial regimens in future COVID-19 clinical trials.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Angiotensin-Converting Enzyme 2/pharmacology , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Animals , Cells, Cultured , Chlorocebus aethiops , Drug Synergism , Humans , Models, Molecular , Recombinant Proteins/pharmacology , SARS-CoV-2/physiology , Vero Cells , Virus Internalization/drug effects , Virus Replication/drug effects
5.
Public Health Pract (Oxf) ; 1: 100029, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-640341

ABSTRACT

Objects passed from one player to another have not been assessed for their ability to transmit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We found that the surface of sport balls, notably a football, tennis ball, golf ball, and cricket ball could not harbour inactivated virus when it was swabbed onto the surface, even for 30 â€‹s. However, when high concentrations of 5000 â€‹dC/mL and 10,000 â€‹dC/mL are directly pipetted onto the balls, it could be detected after for short time periods. Sports objects can only harbour inactivated SARS-CoV-2 under specific, directly transferred conditions, but wiping with a dry tissue or moist 'baby wipe' or dropping and rolling the balls removes all detectable viral traces. This has helpful implications to sporting events.

6.
EMBO Mol Med ; 12(8): e12697, 2020 08 07.
Article in English | MEDLINE | ID: covidwho-434202

ABSTRACT

Baricitinib is an oral Janus kinase (JAK)1/JAK2 inhibitor approved for the treatment of rheumatoid arthritis (RA) that was independently predicted, using artificial intelligence (AI) algorithms, to be useful for COVID-19 infection via proposed anti-cytokine effects and as an inhibitor of host cell viral propagation. We evaluated the in vitro pharmacology of baricitinib across relevant leukocyte subpopulations coupled to its in vivo pharmacokinetics and showed it inhibited signaling of cytokines implicated in COVID-19 infection. We validated the AI-predicted biochemical inhibitory effects of baricitinib on human numb-associated kinase (hNAK) members measuring nanomolar affinities for AAK1, BIKE, and GAK. Inhibition of NAKs led to reduced viral infectivity with baricitinib using human primary liver spheroids. These effects occurred at exposure levels seen clinically. In a case series of patients with bilateral COVID-19 pneumonia, baricitinib treatment was associated with clinical and radiologic recovery, a rapid decline in SARS-CoV-2 viral load, inflammatory markers, and IL-6 levels. Collectively, these data support further evaluation of the anti-cytokine and anti-viral activity of baricitinib and support its assessment in randomized trials in hospitalized COVID-19 patients.


Subject(s)
Antiviral Agents/pharmacology , Artificial Intelligence , Azetidines/pharmacology , Betacoronavirus , Coronavirus Infections/drug therapy , Pandemics , Pneumonia, Viral/drug therapy , Protein Kinase Inhibitors/therapeutic use , Sulfonamides/pharmacology , Adult , Aged , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , Azetidines/pharmacokinetics , Azetidines/therapeutic use , COVID-19 , Cytokines/antagonists & inhibitors , Drug Evaluation, Preclinical , Drug Repositioning , Female , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Leukocytes/drug effects , Liver , Male , Middle Aged , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Purines , Pyrazoles , SARS-CoV-2 , Spheroids, Cellular/drug effects , Spheroids, Cellular/virology , Sulfonamides/pharmacokinetics , Sulfonamides/therapeutic use , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL